ZAP Cross Debuggers
For Freescale
Microcontrollers

ZAP is a family of full-featured C and assembly language source-level debuggers designed to give Freescale
embedded microcontroller developers a consistent and productive debugging environment across multiple

target processors.

Key Features:

Provides a Portable Debugging Environment,
Debugger for Each Stage of Your Project,
C and Assembler Source-level Debugging,

ANSI C Debugging,
Array and Structure Explorer,

Debug Fully Optimized Code,
Easy-to-use Graphical User Interface,
Extensive Program Control & Analysis Features,
Graphical Performance Analysis,

Code and Data Coverage,

C Level Trace,

Robust Script language,
Automated Testing,

Real-Time BDM debugging,
Hardware Breakpoint support,
FLASH and EEPROM Programming,
Debug from FLASH,

ZAP Addresses Your Debugging Needs At
Each Stage of Your Project

ZAP’s multiple configurations are designed to address your
debugging needs as your project moves from the design stage
to final integration and test; ZAP configurations supported
are: software simulation, target monitor, MONOS,
background debug mode, and in-circuit emulator. Each
configuration gives you essentially the same user interface,
thus vastly improving your productivity, but each addresses a
different stage of your project.

C and Assembler Source-level Debugging

If your source code is written in C, you want to debug at the C
level; if parts of your source code are written in assembly
language you want to debug at the assembly language level.
ZAP automatically supports both modes without any special
options or settings, so you always see your original source
code in the Source window. If you are debugging at the C
level, you can activate a Disassembly window that shows you
the corresponding assembly language code for each line of C
source.

ANSI C Debugging

ZAP Gives You a Portable Debugging
Environment Across Projects

ZAP provides point and click access to any C object or
construct including enums, bit fields, strings, doubles/floats,
structures and stack frames. View objects and memory in
various formats including character, binary, octal,
hexadecimal, unsigned, ASCII and string formats.

ZAP Debugs Fully Optimized C Code

If you now use or are looking to design-in different Freescale
microcontrollers into your embedded projects, ZAP helps you
standardize your debugging tools across projects by giving
you a portable graphical user-interface which helps improve
developer productivity, saves expensive retraining costs and
reduces product time-to-market pressures. ZAP is available
for most Freescale microcontroller families and across target
debugging hardware, so you have the freedom to choose a
development environment that meets your needs and budget.

COSMIC C Compilers generate exactly the same code with
and without the debug option, which means you can debug
fully optimized C code and, once debugged using ZAP, your
code is ready for PROM burning with no need to recompile.
Several versions of ZAP even program FLASH and EEPROM
directly. Debug information is never downloaded, FLASHED
or PROMED into the target system.

Page 1/6

Trademarks are the property of their respective holders.

Easy-to-use Graphical User-Interface

ZAP is a full featured C and Assembly source level debugger interface available on PC for Windows 95/98/NT/2000 and XP. ZAP is
an easy to use, intuitive debugging environment with a serious debugging engine incorporating over 15 years of embedded compiler
and debugger technology. Zap includes all of the bells and whistles that desktop C programmers expect along with all of the low
level features assembly language programmers need. ZAP’s core technology along with it’s look and feel are available for many
different target processors and execution environments including Simulation, Monitor, Background Debug Mode and in-circuit

emulation.

File Ewvents Browse Debug Selupg

InrgeltDF’EG) Show Windows

Exansions Inerrupts

6n:ar Kermel ng

2| ala| | wle _E}__I =2 Ialul@Em _I

r

Crisi_sZ56.s %]
BEpIOm_Bxam
ioHCE1200h
isr.c
led_dip.c
main.c
Funciions
{} clear_p
1} main()
1} togole_
= {1 Veriables
BB count
B cs_mair
B infinite_
8 PORTA
B PORTE
8 PORT>
8 PORTY
B FORTZ
B prime_t
B pir
BB swi_cou
BB t=ble
mod(.c
modi.c
modZ.c
modic
modd.c
mods.c
modi.c
mod?.c
modi.c
mod9.c
moda.c
modb.c
radc.c

e

I e

,;
T heQaaa

HdEadadaag2aaada4a

L

;u:_I;ITF;r_+_+_+_1_1:?|?|?|?|T|

Command

a:00 3 UCHARS 1,3, tmp, sw_tst; sbazZ stabh 2,s L3
b:07 14 00<l152 6983 alrc 3, = L3
loc: XHIN. . C 154 DDRE = OxFF; inahle as o 00154 2027 bra 0x0=17d [L1
®:E000 RNET] DDRH = 0=0; / Enable az Ix 00=156 &230 aolr 0,= Ll
y:0001 17 & sw_tst = PTH; 00=158 =60l ldab #Ox0D1 Ll
s:3fee 00<152 &b31 stab l.,= Ll
ppage: 00 198 for (3 = 0; 3 < loop; j++) 00=15¢c 200b bra OxDcl69 [LZ
perelse o0 { 0015« JEEE Lz
ppe:00zlse 1 while (=w_tst == PTH) fiw D0=160 f£40Z&0 andh _PTH LZ
Cycles: 22 i 00=163 ShOl stab <_PORTBU LZ
oooooooooT Z3% for (1 =0, tmp = 1; 1 = 0x5; 00=165 &881 1sl 1, = LZ
0000024811 4 002167 &280 ingo 0,= LZ_]
002162 =680 1dab o,s LZ
1a.. EEE O0z1l6b <108 cmpb H#OxD8 L2
D0cl6d 25ef bes OxDelSe [LE
O0=16f e&B2 iab 2,2 LZ
23 } 00=171 £10Z&0 emph _PTH LZ
204 =w_tat = PTH; = 00174 27e0 beg 0x0e¢l56 [LE
1 DELAY 00<176 £&0Z60 ldab _PTH LZ
, i | B i 00179 &LAZ stebh 2,s LZ
bed_Dip (loop=:jf=a : N0217h 6283 ine 3,m 12
pnain() ‘! ! Ni-194 =da? Idabh 3 = ‘-‘?;I
M[=]E3 | 51 Function Browser iDL
Save Fie
= FORTEL (1) main.c: 66 [} (user) {(count = _:J
FORTBLLbyte = 0 unctions in file: seprom example.c *rr** breakpoint main.c: 66
= PORTBUR {an) extern wvold seprom_example() (Z2) sieve.c:36 {} (user) (count =
PORTBULLO =0 {on) extern woid eesinit() at OxcZd shedd hreakpoint sieve.c:36
PORTBUbL.LT =0
PORTBUBLZ =0 Functions in file: i 1l |
_ 1 A=F. &
QEEE: Ez=g {on) extern wvoid IWI_TRAF() at Oxc B data:0x1000
FORTEL B BE < 0 {on) extern wvoid IJR _TRAP() at Oxc i P P I SR
FORTEUbBbBE=0 001010 ObOd 1113 1714 1€£25
PORTBULLT =0 unctlions in £ile: led dio.c 001018 292b Z£35 3b3d 4347)+/5; —CG_,,,,I
count=1 (o) extern void Led Diplunsigned o DO10Z0 424f 5359 6165 676b IOSYaegk o
wl CDUnt:‘ - AT TEQT QTIOMN NOMMN e
| ﬂ 'IJ

ZAP Main Window

Source Window

The main ZAP window acts like a desktop containing all of the
display windows as well as all of the setup menus and status
information. This window includes an optional button bar to
control execution and displays. All of the buttons, menus and
configuration are the same for all ZAPs except for the Target
menu, which contains any target specific options and features
such as FLASH programming, Hardware breakpoints, emulator

trace etc..

The Source window displays the source code for the loaded
application and maintains the display during execution with the
current Program counter. This window is color coded for C
and Assembly keywords and optionally displays absolute
addresses or code coverage information. You can double click
on line numbers to set breakpoints, select variables for the
monitor/watch window and single step the program.

Trademarks are the property of their respective holders.

Page 2/6

|ZAP Source-Level Debugger

Product Description

PC/Windows Host|

Disassembly Window

The Disassembly window reads from the target’s memory to
provide an accurate disassembly of the actual programmed
code. Colored highlights in the disassembly window are
aligned with the source window to show the assembly
instruction(s) corresponding to the highlighted lines in the
source window. This window is useful when single stepping at
the assembly level or tweaking the performance of the code.
You also can double click on the addresses to set breakpoints.

Register Window

e Upload Data — The data window can also be used to
upload data from target memory to a text file. The
data can be formatted as a data dump, disassembly or
uploaded and converted to S-Records. This is useful
for extracting an existing application from a target
system.

Source Browsing

This window displays the internal CPU registers and allows
you to modify the values by double clicking. The Simulator
version of ZAP also includes two cycle accurate MCU
counters. One displays the total number of cycles executed
since the last reset and the second displays the number of
cycles from the last execution command.

Command Window

The optional Command window is used to load command
scripts or type any individual commands. The command
window is useful for monitoring individual structure and array
members as well as creating automated debugging sessions

Stack window

The source browser lets you search through the application’s
source files and double click on any function or file name to
open multiple windows to let you view any source file in your
application. You can also set breakpoints in any source
browser window without changing the main source window.

&l Function Browser =1
Save Frint
Functions in file: isr.o -

[E=13% extern void _SWI_TSR{) at Oxzl94

[§=3%] extern void _TIsr Trap() at Dxclaa
Functions in file: factor.o

i)] extern wvoid fill table() at Oxcléal

[§=33%] extern int facti{int n) at OxclS1l -
| | »

ZAP Configurations

The Stack window displays a list of the functions in the current
stack frame in the order they were called. It also displays the
value of each function’s arguments. This display provides a
convenient way to follow execution through nested and
recursive function calls.

Monitor/Watch window

The Monitor window is a scrollable window, which displays
the values of monitored data objects and expressions. This
window is updated each time the execution environment halts
execution. You can double click on any variable to change its
display format or update its value. Supported formats include:
address of, character, binary, octal, decimal, unsigned,
hexadecimal and string. Depending on the hardware used,
ZAP also supports Real-Time Monitors that allow you to
monitor and update variables and memory while the program is
executing.

Data window

The Data window displays a block of target memory in a
variety of formats including: disassembly, byte, word, long,
binary, octal, decimal, hexadecimal and ASCII. You can
change R/W memory simply by clicking on the value and
typing the new value over the old. Changes in memory
contents are highlighted to make it easy to track memory
modifications as your program executes.

e Fill Memory — This option allows you to fill memory
between addresses with a specific or random pattern.
The fill pattern can be a byte, word or long.

ZAP configurations define the code execution engines that
ZAP uses to execute your application code. In general, each
configuration is a separate application that provides full C and
assembly language debugging. However, in some cases certain
features are absent due to limitations in the target execution
engine. For each target microcontroller supported by COSMIC
products, there are at least two separate ZAP packages: (1) a
remote, real-time debugger and (2) a hosted, non real-time
simulator/debugger. All ZAP configurations include the
standard windows described previously as well as the
following features:

e Simulated I/O - The simulated I/0O feature is a very
powerful feature that allows your application to
interact with multiple data files located on the host
system. This is typically achieved via a command
script using watch points at PORT addresses along
with special fopen, fread and fwrite ZAP commands.

e Automated Testing — ZAP offers a robust high
level command and scripting language which can be
used to load multiple command scripts with multiple
applications and perform any combination of ZAP
commands without any user interaction. Compatible
with most unit test programs including Vector
Software’s VectorCast.

e Save Layouts and Sessions — This feature allows
you to save a debugging session and play it back later.
The save layout command saves the size and location
of any open ZAP display windows. The save session
command saves the layout, loaded application, source
path and any monitor and data windows with their
contents. In addition, ZAP can optionally save the

Page 3/6

Trademarks are the property of their respective holders.

ZAP Source-Level Debugger

Product Description

PC/Windows Host

current layout on exit as the default for the next time
ZAP is opened.

Simulator Configuration (ZAP SIM)

Code Coverage

This configuration of ZAP provides an integrated cycle
accurate instruction set simulator as the execution engine.
Simulation is useful in the initial stages of your design, before
you have access to target hardware, because it gives you a
convenient way to debug algorithms and data structures before
moving onto the more complicated hardware and software
integration phase. You can also profile the execution of your
code with the built in cycle accurate instruction timer to help
you tune your application. The simulator configuration of ZAP
is available for all target microcontrollers with Cosmic
compiler support. ZAP SIM includes all of the standard ZAP
features as well as the following additional features::

e Cand Assembly trace (non-real time) — step
backwards and forward through a recorded trace
complete with recorded monitor values and register
values.

e Interrupt Simulation - Simulate interrupt using the
cycle accurate timer as a trigger mechanism or trigger
on execution of an address.

Graphical Performance Analysis

ZAP SIM’s Code coverage feature displays information on
executed source lines and address information. Choose to
show all coverage, only code executed or only code not
executed. Optional text report are available. Code coverage
information can also be displayed in each source browser
window by selecting “show” from the title bar.

lLg/Code Coverage - o] x|
Refresh Sawve Frint

Address SRC Line Executions Timing f—
Source File: iswv.c:

Bxc256 i@ 9 i8

Bxc257 12 9 98

Bxc25d 13 9 i8

Bxc25f ig NOT REACHED a

Bxc25f 28 NOT REACHED a
Source File: factor.c:

Bxclf3 17 i@ 28

Axclfh 21 i@ 88

Bxcifa 22 188 3772

Bxc226 23 9 i8

Bxc229 28 468 928

Bxc22h e]:] 468 3688

Bxc232 3 188 [s1515)

Bxc23? 33 1) 14631 h

Variable Usage Reports

ZAP SIM includes a performance analysis feature that displays
cycles of execution on a file by-file or function-by-function
basis. Double click on a function name or file name to display
the number of times the function was called and the total
number of cycles executed for that function. Performance
information may also be saved as a text report.

ZAP SIM also includes a variable usage report feature that
details global variable usage for each variable. ZAP totals the
number and type of access for each variable. It also details
each access to include the address of the instruction accessing
the variable, the type of access (read or write) and the line
number in the source file that performed the access.

liilPerformance Analysis =S| Lﬂvafiame Usage for: demo.c _I_I— | il
Refresh FileSoit CallSot Time Sort Save Refresh Save Print
Total Calls: A28 Total Cycles: 75862 ;I
Usage for: swi_count
Filer ier.e (READS: 185, WRITES: 37, Total: 142>
_SWI_ISR() [] _I
_Isr_Trap() at Bx38 WRITE Line: 36 in: main<{>:demo.c
File: factor.c at Bx3b URITE Line: 36 in: main{>:demo.c
£i11 table(} at Bx3a8@ READ Line: 52 in: main{>:demo.c
 fact() at Bx3a83 BREAD Line: 52 in® main{):demo.c
File: float.< at Bx3bc4 READ Line: 12 din: _SWI_ISR{):isr.c
area_cir() at Bx3bca UYRITE Line: 12 din: _SWI_ISRO:disr.c
pile: sisve.c at @x?612 READ Line: 52 in: main{):demo.c
oy el at Bx7615 READ Line: 52 in: main(O):demo.c
T at Bx7c1@ READ Line: 12 in: _SWI_ISROzisr.c
e =l at @x7clé WRITE Line: 12 in: _SWI_ISRO:iswm.c
at Bxbb5e READ Line: 52 in: main{>:demo.c
at Bxb6el READ Line: 52 in: main{>:demo.c
at Bxbc42 READ Line: 12 din: _SWI_ISR{):isr.c
Chronograms at Bxbc48 WRITE Line: 12 in: _SWI_ISRO:isr.c
at gxgggg EEE% kine: g% in:z mainé;:gemo.c
i i i i HH at Bx ine: in: main{):demo.c
Dlsplayg,a?raphlcgl function call time-line for your at Bxfoeh READ Line: 12 in: Sl 1SRGy Iior.c £
application’s functions. The Chronology information complete £—facfadd —LRITE I inas 42 do: —CUI_TeDONS
with enter and exit cycle counts can be saved in a text report
for future use.
{ 1] Function Chronology =1
Befiesh Save
Function Chronology
_SWI_ISRO T I T T T
Fill_table(> T (| (| T T T
Fact (> || | | | | |
al_"eaf'z)ir() I . S . E—
sieve I S S S S e
toggle bhits{>(___ [1 71 T T
clear_ports()] | [| [I
nain<y I 1 11 11 — - T
Page 4/6

Trademarks are the property of their respective holders.

|ZAP Source-Level Debugger

Product Description

PC/Windows Host|

Background Debug Mode (BDM)
Configuration

(3) Choose “Single Step” for unlimited breakpoints when
real-time execution is not required. ZAP uses instruction

ZAP is available for Freescale’s Background Debug Mode
interface on the S08, ColdFire, S12Z, HC12, S12, S12 MagniV
S12X/XGATE, 68HC16 and 68300 processors. This version
of ZAP uses a PC USB or parallel port to interface directly to
the target system using a BDM interface cable.

ZAP S127, S12X/XGATE, S08 and ColdFire
BDM

steps for all execution in this mode.
ZAP 6816/68300 BDM

ZAP for 68HC16 and 68300 uses P&E Microcomputer
Systems” CABLE_16/32 and ICD16/32 and the following 10

pin BDM interface.

ZAP 6812 BDM, ZAP S12X/XGATE, ZAP S12Z BDM, ZAP
S08 BDM and ZAP CFV1 BDM supports P&E Microcomputer
Systems’ BDM Multilink (LPT and USB) and Multilink
Universal via a 6 pin BDM target interface as shown below:

BEGD 1 s & (2 GND

HC 3 = = |4 RESET

HC 5 &« & (6 PWR

These versions of ZAP include all of the standard ZAP features
and the following additional processor specific features:

FLASH and EEPROM programming - ZAP performs
one step/one file downloads to FLASH, EEPROM and
RAM.

Real-Time Debug - Debug code stored in on-chip FLASH
or EEPROM. Popular for in-the-field debugging and
reprogramming production systems.

Bank Switching — ZAP includes complete support for the
on-chip bank switching mechanisms.

Real-Time C Trace — ZAP HCS08 BDM includes a real-
time C and Assembly trace, complex triggers and
profiling features using the HCS08’s debug module.

Hardware Breakpoints — ZAP supports the on-chip
hardware breakpoints for code and code and data
breakpoints. Software breakpoints are also available when
debugging out of RAM or in single step mode.

Real-time Memory — monitor and modify any data objects
and memory while the processor is running.

Multiple Execution Modes — ZAP offers 3 execution
modes for different target environments and chip modes.

(1) Choose Hardware Breakpoint mode for real-time
execution and debugging in single chip mode with
program located in on-chip FLASH and/or EEPROM.

(2) Choose BGND mode for real-time execution and
debugging with an unlimited number of software
breakpoints. Code is executed in RAM.

Backyround mods header diapram:
DE 1| * * | 2 BERR
GHD 2| - = | 4 RBKPT/MECLK
GHD £ |« = | & FREEZE
HESET 7 |+ = | & IFETCH/DEI
VDD & | . a | 10 IFIPEHSO

ZAP CABLE16/32 currently supports all of the HC16 and
683000 processors. This version includes all of the standard
ZAP features and the following additional features:

Real-time Debug: C and assembly Source level debugging
of code executed from RAM with an unlimited number of
software breakpoints.

In-Circuit Emulator Configuration

The ICE configuration of ZAP is often used in the latter stages
of development to fine tune optimizations and track down hard
to find bugs in real-time embedded applications. The ZAP
interface is currently available for the following emulators:

Freescale MMEVS/MMDS™ 68HC08
Freescale, MMEVS/MMDS™ 68HCO05

This version provides additional features to fully support the
Bus State Analyzer with C and Assembly source trace,
complex event triggers and dual real-time memory support for
viewing and updating data objects while the program is
executing.

ZAP MONOS8

ZAP MONOS is designed to work with the 68HC08 MONO08
serial interface and P&E MONO8 Multilink cable. This
version supports FLASH programming, the on-chip hardware
breakpoint and security mechanism to provide a low cost real-
time debugging solution directly on the target system.

ZAP for inDart design kits

ZAP for inDART is available for inDart-HC08 and inDart-
HCSO08 design kits. The HC08 version uses the on-chip
MONO08 module to provide real-time debugging, flash
programming and security support. The HCS08 version uses
the on-chip BDM and debug modules to provide additional
features including real-time trace and triggers.

Page 5/6

Trademarks are the property of their respective holders.

ZAP Source-Level Debugger

Product Description

" freescale*

Alliance Member

For Sales Information please contact

=

Cosmic Software Inc.

17 Bridge St, Suite 101

Billerica, MA 01821 USA

Phone: +1978 667- 2556 Fax: +1978 667- 2560
Email: sales@cosmic-us.com

Email: sales@cosmic-us.com

web: www.cosmic-software.com

B

Cosmic Software France

33 Rue Le Corbusier, Europarc Creteil
94035 Creteil Cedex France

Phone: + 33 4399 5390 Fax: + 33 4399 1483
Email: sales@cosmic.cosmic.fr

web: www.cosmic.fr

p—

Cosmic Software GmbH

Rohrackerstr 68 D-70329 Stuttgart Germany

Tel.+ 49 (0)711 4204062 Fax + 49 (0)711 4204068
Email: sales@cosmic-software.de

web: www.cosmic-software.de

Page 6/6

Trademarks are the property of their respective holders.

PC/Windows Host

